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ABSTRACT

We report progress on the development of methods in a number of specific areas of
application including static, non-cooperative games related to counter- and counter-counter-
electromagnetic interrogation of targets, modeling of complex viscoelastic polymeric mate-
rials, stochastic and deterministic models for complex networks and development of inverse
problem methodologies (generalized sensitivity functions; asymptotic standard errors) for
estimation of infinite dimensional functional parameters including probability measures and
temporal/spatial dependent functions in complex nonlinear dynamical systems. These ef-
forts are part of our fundamental research in a modeling, estimation and control methodology
(theoretical, statistical and computational) for systems in the presence of major model and
observation uncertainties.



1 Brief Overview Summary

One goal of a principle component of our research has been multiscale issues in complex
materials as a means to understand the macroscopic mechanical properties of filled rub-
ber/elastomers and polymers (including biotissue) and their connection to the microscopic
origin of stress in these materials. During the period of this grant we have made significant
progress as detailed in the publications [P13,P15]. In these efforts we incorporated a Rouse
model for polymer chains into the linear continuous stick-slip molecular-based tube repta-
tion ideas of Doi-Edwards and Johnson-Stacer. This treats the physically constrained (PC)
molecular stretches as internal strain variables for the overall PC/chemically cross-linked
(CC) system. It yields an explicit system of stress-strain equations for the system permit-
ting simple calculations of complex stress-strain relations. The model that as developed in
[P13,P15] treats the PC molecule as entrapped within a constraining tube, which is com-
prised of both CC and PC molecules. The model was tested and validated with experimental
data sets from the literature including data from polyisoprene, and polyisoprene with carbon
black reinforcement. The ideas were applied in [P14] to model shear waves in biotissue as
part development of inverse problem methodology in noninvasive medical diagnostics.

We continue to make significant progress in our work on development of a probability
based framework (the Prohorov Metric Framework or PMF) to treat uncertainty in dy-
namical models. Our work on related sensitivity concepts for dynamical systems depending
explicitly on the probability distributions characterizing modeling heterogeneities and uncer-
tainties has resulted in new and fundamental theories in [P1,P7,P12]. Because these generally
unknown "parameters" (the probability distributions or measures) do not belong to a Ba-
nach space, fundamental questions regarding sensitivity derivatives arise. Our progress on
theoretical and computational fronts by was achieved by treating the distributions as ele-
ments of a convex subset of a metric space with the Prohorov metric; sensitivities are defined
in terms of directional derivatives. We demonstrated the power of these ideas on both linear
and nonlinear systems with distribution dependent dynamics as outlined in [P7]. Important
applications (in modeling, estimation and control problems) include modeling uncertainties
in complex networks such as food production [P16], communication, logistical supply chains,
etc.; electromagnetic systems in complex dielectrics [P2,P5,P9]; and viscoelastic materials
[P13,P15] as well as models for production of biological counter measures to viral and toxic
attacks on populations [P7]. Theoretical and computational efforts based on [P4] for an
asymptotic distribution theory (for large sample sizes) are currently being pursued with
slow but steady progress. Some of the theoretical efforts are motivated by our continuing
efforts to understand dispersal of pulsed electromagnetic energy in interrogation problems
[P3,P10,P11,P18,P19] for complex materials and targets. Our efforts on understanding the
use of standard statistical methodologies in finite dimensional inverse problems [P6,P8,P17]
is of significant importance to this pursuit of new uncertainty methodologies.

Finally, we are able report major progress in our long term efforts on anti-interrogation
and anti-anti-interrogation methodologies using controllable ferroelectric and ferromagnetic
layers coatings on conducting objects such as airfoils and missiles to provide an attenuation
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capability against electromagnetic interrogation. Our early computational findings [P3] led
to investigation of a new class of problems wherein problems are formulated as a zero-sum two
player minmax game. Here each player (evader and interrogator) must choose a best strategy
in the presence of uncertainty as to what the other player will do. In [P5] we successfully
formulated static minmax games over spaces of probability measures where the full power
of the Prohorov Metric Framework and our associated theory, approximation, sensitivity
and computational methodology plays an essential enabling role. We have now turned to
dynamic games where both the evader and interrogator has some real time dynamic control
over his own uncertain strategies but has only incomplete information about his adversary's

strategies; these are modeled as Markov diffusion processes at the moment. Our team is
making great progress in this direction.
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3 Relevance of Research to DOD/AF Missions

The development of dynamic electromagnetic pursuit/evasion games with uncertainty and/or
stochasticity is fundamental to DOD/AF development of an electromagnetic/mechanical
active stealth technology for aerospace, land and marine vehicles and other potential targets
of electromagnetic imaging. The origins of this proposed effort lies in long term collaborative
efforts with Dr. R. Albanese and his group at AFRL, Brooks City Base in San Antonio.
Indeed many of the issues we address are in direct response to questions raised by Dr.
Albanese and his team. We have enjoyed a continued close collaborative relationship with
the group during the efforts.

The development of inverse problem methodology for uncertainty quantification and the
development of general classes of nonlinear complex nodal network models with inherent un-
certainties is directly relevant to several recently announced "Discovery Challenge Thrusts"
in AFOSR-BAA-2007-08. In particular, our efforts are related to the programs announced
on "Robust Decision Making" and "Complex Networked Systems" which are concerned with
operational environments where "unexpected events, attacks on and degradations of the net-
work centric system and sudden changes in goals and objectives " must be accommodated.
The need for new modeling paradigms which include robustness in estimation and control
in models with uncertainty is well recognized.

We expect our previous efforts to be of direct interest to scientists and engineers in the
Information Directorate at AFRL, Rome, NY. Indeed, this group has recently hired one
of Banks' Ph. D. students and co-authors, Sarah Grove, whose thesis was completed in
September, 2007 and who worked on the electromagnetic pursuit/evasion games. We hope
to initiate collaboration with their investigators, especially in the nodal network modeling
aspects of our efforts.

4 Detailed Research Summaries

4.1 Interrogation/Counter-Interrogation/
Counter-Counter-Interrogation (I/CI/CCI)

In continuing efforts [17, 21, 22] in collaborative efforts with Dr. R.A. Albanese (AFRL,
Brooks AFB) and his associates, we have made significant progress on counter-interrogation
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methodologies. We have assumed controllable ferroelectric and ferromagnetic layers coating
a conducting object to provide an attenuation capability against electromagnetic interroga-
tion. The problems can be formulated as robust optimization and/or two-player games. We
have shown that the scattered field due to interrogation can be attenuated even with the
assumption of uncertainty in the interrogation wave numbers. The controllable layer com-
posed of ferromagnetic and ferroelectric materials can be incorporated into a mathematical
formulation based on the time-harmonic Maxwell equation. Fresnel's law for the reflectance
index has been extended to the electromagnetic propagation in anisotropic composite lay-
ers of ferromagnetic and electronic devices and used to demonstrate feasibility of control
of reflections. Our methodology has also been tested for a non-planar geometries of the
conducting object (an NACA airfoil and a missile) in which we reported our findings in the
form of reduced radar cross sections (RCS).

We subsequently [22] have shown that even rather simple counter-counter-interrogation
measures by the interrogator will defeat straight forward evasion design. Thus we were led
to investigations of how each of the evader and the interrogator might try to confuse the
other by adding uncertainty in their design strategies. Our early computational findings led
to investigation of a new class of problems wherein problems are formulated as a zero-sum
two player minmax game. Here each player must choose a best strategy in the presence of
uncertainty as to what the other player will do. This leads in [17] to minmax games over
spaces of probability measures where the full power of the Prohorov Metric Framework and
our associated theory, approximation, sensitivity and computational methodology plays an
essential enabling role.

Specifically, in [21] we demonstrated that it is possible to design ferroelectric materials
with appropriate dielectric permittivity and magnetic permeability to significantly attenuate
reflections of electromagnetic interrogation signals from highly conductive targets such as
airfoils and missiles. This was done under assumptions that the interrogating input signal
is uniformly likely to come from a sector of interrogating angles a E [ca, aI] (a - -

where 0 is the angle of incidence of the input signal) but that the evader has knowledge
of the interrogator's input frequency or frequencies (denoted here as the interrogator design

frequencies ID). Example radar cross sections defined by

RCS(a) = 101ogl 0 (1IF(a+7r)12)

are shown for two optimized coating materials vs. that for no coating in Figure 1. (Here
F,(a+7r) is the reflected far field for incident angle a based on inverse scattering for Maxwell's
equations as explained in detail in [21].) Corresponding reflected field intensities for compar-
ison between the no coating layer case and the optimized complex parameter case of Figure
1 are depicted in Figure 2 for an angle of interrogation a = 7r/4.
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Figure 1: The RCS for optimized complex-valued material parameters (E*, j) (blue line);
for optimized dielectric only (fr, Ar = 1) (green line); and for no coating (Er = 1; Ptr = 1)
(red line) for wavelength A = 1/4.

Figure 2: The reflected field E,(r) for no coating (Er = 1,. = 1) (left) and for the case
of optimized complex-valued material parameters (E*, p*) (right) for A = 1/4 and angle of
interrogation a = 7r/4.
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These results were further sharpened and illustrated in [22] where a series of different
material designs were considered to minimize over a given set of input design frequencies ID

the maximum reflected field from input signals. In addition, a second critical finding was
obtained in that it was shown that if the evader employed a simple counter interrogation
design based on a fixed set (assumed known) of interrogating frequencies ID, then by a
rather simple counter-counter interrogation strategy (use an interrogating frequency little
more than 10% different from the assumed design frequencies), the interrogator can easily
defeat the evader's material coatings counter interrogation strategy to obtain strong reflected
signals.

From the combined results of [21, 22] it is thus rather easily concluded that the evader
and the interrogator must each try to confuse the other by introducing significant uncertainty
in their design and interrogating strategies, respectively. This concept, which we refer to
as mixed strategies in recognition of previous contributions to the literature on games (von
Neumann's finite mixed strategies-see[17]), leads to two player non-cooperative games with
probabilistic strategy formulations. These can be mathematically formulated as two sided
optimization problems over spaces of probability measures, i.e., minmax games over sets of
probability measures. In [17] we provided a mathematically precise formulation of such a
class of two sided optimization problems and discussed our initial computational efforts on
such problems. Approximation methods were introduced and their computational efficacy
were demonstrated with several simple examples.

More precisely, we considered electromagnetic interrogation of objects in the context of
minmax evader-interrogator games where each player has uncertain information about the
adversary's capabilities. The minmax cost functional is based on reflected fields from an
object such as an airfoil or missile. We used the simplest reflection coefficient based on a
simple planar geometry (e.g., see Figure 3) using Fresnel's formula for a perfectly conducting
half plane which has a coating layer of thickness d with dielectric permittivity c and magnetic
permeability p. A normally incident (0 = 0) electromagnetic wave with the frequency f is
assumed to impinge the half plane. Then the corresponding wavelength A in air is A = c/f,
where the speed of light is c = 0.3 x 10'.

The reflection coefficient R for the wave is given by

R- a+b (4.1)

1 + ab'

where

a - and b = e4 iTr / fifd/c. (4.2)

This expression can be derived directly from Maxwell's equation by considering the ratio of
reflected to incident wave for example in the case of parallel polarized (TE,) incident wave
(see [21, 54]). An alternative and much more computationally intensive approach (which
may be necessitated by some target geometries) employs the far field pattern (see [38]) for
intensity BR(E, P, a, f) of reflected waves computed directly using Maxwell's equations (see
[21, 22]) and allowing a non-normal angle of incidence a = E - ¢$ ".
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Y

Figure 3: Interrogating high frequency wave impinging (angle of incidence ¢) on coated
(thickness d) perfectly conducting. surface

The evader and the interrogator are each assumed subject to uncertainties as to the
actions of the other. The evader wants to choose a best coating design (i.e., best E's and
p's ) while the interrogator wants to choose best angles of interrogation a and interrogating
frequencies f. Each player must act in the presence of incomplete information about the
other's action. Partial information regarding capabilities and tendencies of the adversary
can be embodied in probability distributions for the choices to be made. That is, we may
formalize this by assuming the evader may choose (with an as yet to be determined set
of probabilities) dielectric permittivity and magnetic permeability parameters (C,jt) from
admissible sets S x M while the interrogator chooses angles of interrogation and interrogating
frequencies (a, f) from sets A x .F. The formulation here is based on the mixed strategies
proposals of von Neumann [4, 60, 61] and the ideas can be summarized as follows. The
evader does not choose a single coating, but rather has a set of possibilities available for
choice. He only chooses the probabilities with which he will employ the materials on a
target. This, in effect, disguises his intentions from his adversary. By choosing his coatings
randomly (according to a best strategy to be determined in, for example, a minmax game),
he prevents adversaries from discovering which coating he will use-indeed, even he does not
know which coating will be chosen for a given target. The interrogator, in a similar approach,
determines best probabilities for choices of frequency and angle in the interrogating signals.
Note that such a formulation tacitly assumes that the adversarial relationship persists with
multiple attempts at evasion and detection.

The associated minmax problem consists of the evader choosing distributions P, (E, y) over
$ x M to minimize the reflected field while the interrogator chooses distributions Pi (a, f) over
A x Y to maximize the reflected field. If BR(6, A, a, f) is the chosen measure of reflected
field and P, = P(S x M) and Pi = P(A x F) are the corresponding sets of probability
distributions or measures over S x M and A x F, respectively, then the cost functional for
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the minmax problem can be defined by

J(P, P) = IxM J IBR(E, p, a, f)i 2dPe( , L)dPi(c, f). (4.3)

The problems thus formulated are special cases of classical static zero- sum two player
non-cooperative games [4, 33] where the evader minimizes over P, E 7 and the interrogator
maximizes over Pi E Pi. In such games one defines upper and lower values for the game by

7= inf sup J(P,, Pi) (4.4)

PeEP PEPi

and

g= sup inf J(P, P). (4.5)

The first represents a security level (worst case scenario) for the evader while the latter is
a security level for the interrogator. It is readily argued that J < J and if the equality
P = J holds, then P is called the value of the game. Moreover, if there exist P* E P,

and Pj* E 7i such that

P = J(P*, P*) = minpEp. J(P, PF*) = max J(P*, P),
P, EPi.

then (P*, Pi*) is a saddle point solution or non-cooperative equilibrium of the game.
To investigate theoretical, computational and approximation issues for these problems, it

is necessary to put a topology on the space of probability measures. Given a set I, a natural
choice for 7(I) is the Prohorov metric topology [35, 51, 57] as used for minimization/inverse
problems in [7, 9, 16, 30]. Prohorov metric (p) convergence is weak* convergence in P when
7 is considered as a subset of the topological dual C (I) of the space CB(I) of bounded
continuous functions on I. More precisely, convergence p(Pk, P) -- 0 in the Prohorov metric
is equivalent to

jf( )dPk( ) -* jf( )dP( ) for all bounded, uniformly continuous f: I - R1.

It is known [7, 9] that if I is a complete metric space, then P' taken with the Prohorov
metric is a complete metric space. Moreover, if I is compact, then so is P. Using these
properties and arguments similar to those in [7, 15, 16, 24, 30], one can develop well-posedness
and approximation results for the minmax problems defined above. Efficient computational
methods that correspond to von Neumann's finite mixed strategies [4] can readily be presented
in this context. These can be based on several approximation theories that have been
recently developed and used. The first, developed in [7] and based on Dirac delta measures,
is essentially a zero-order spline or Walsh element scheme, while the second, developed and
used in [30], is a first-order or piecewise linear spline or finite element scheme. These are
discussed in more detail in [17].
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To establish existence of a saddle point solution for the evasion-interrogation problems
formulated above, one can employ a fundamental result of von Neumann [60, 61] as stated
by Aubin ([4]-see p. 126). As detailed in [17], one can argue a desired well-posedness results.

Suppose S, M, -), .F are compact (a reasonable assumption for the applications of interest
to us here) and define the spaces Xo = P(S x M), Y = P(-) x F) taken with the Prohorov
metric. Then X 0, Y are compact, convex subsets of X = C (£ x M) and Y = C*(D x F),

respectively. Moreover, there exists (P, P*) E P(E x M) x P(-D x F) such that

J(P*,P*)= min max J(Pe, P) = max min J(P,, P).
P(SxM) P(4 x.F) P(x.F)7P(CxM)

In light of equations (4.4) and (4.5), this important results allows each player to inves-
tigate worst case scenarios (assuming he optimizes his own situation) even in presence of
uncertainty about his adversary's action.

In [17] we also developed an approximation framework and a corresponding convergence
theory for classes of min-max problems based on approximations of the measures using
the delta measures of [7]. We considered a number of different material designs from [22]
that were developed earlier in investigations of counter interrogation and counter-counter
interrogation feasibility. We used a number of these materials to define families of admissible
evader sets & x M in our initial exploratory calculations in demonstrating ease of calculations
for problems as outlined here. Details are given in [17].

4.2 Inverse Problems for Systems with Functional Parameters

In [8] we considered a class of probability measure dependent dynamical systems such as
those that arise in the study of multiscale phenomena in diverse fields such as immunological
population dynamics, viscoelasticity of polymers and rubber, and polarization in dielectric
materials. We established conditions for existence and uniqueness of the forward problem
and well-posedness (including method stability under numerical approximations) for the
inverse problem of estimating the probability measures. Moreover, we presented a general
theoretical framework including implementable approximation ideas for inverse problems
involving measure dependent dynamical systems. This framework dealt with systems in
which the expected state dynamics are given by an abstract differential equation

± (t) = F(t, x(t), P) ,

where the right side is dependent on the probability measure P. In general, the system can
also represent a delay or partial differential equation.

The motivation for our efforts include several important examples of measure dependent
dynamics that have arisen in recent applications that are of direct interest to AFOSR, AFRL,
and other DOD agencies. Realistic models in viscoelasticity of polymers and rubber as well as
polarization in dielectric materials share certain features with our formulation. Specifically,
recent studies [28, 29, 18] of molecular-based stick-slip reptation models for heterogeneous
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viscoelastic polymer chain materials involve measure dependent systems of the form

1 29u(t,x) 0 u x; P) = F(t), (4.6)

where u is the tensile displacement, a is the measure dependent stress

a(t, x; P) = g,(E(t), (t)) + J El (t, x; T)dP(T) , (4.7)

with strain = and "internal" strain el defined by

x; T) + 1 I(t, x; 7-) = i(t, x)h(c(t, x)) . (4.8)
at T

Here the measure P accounts for the distribution of relaxation properties in the heteroge-
nous long chain polymer molecules. In [25, 26] it is shown that similar models (with different
nonlinearities in (4.7), (4.8)) are important if one replaces Fung kernels [43] with equations
for distributed molecular mechanisms in describing shear response in biotissue. In another
important application [15, 16], the systems are the usual Maxwell's equations for the elec-
tromagnetic fields E and H in a heterogeneous dielectric and are given by

VxE - B V.D=OV xH °D° +J V.H=O

D =c,E+P,

with the exception that now the probability measure (P) dependent macroscopic polarization
P is given by

P(t) -= J [pl(t; 71) + p 2 (t; T2 )]dP(Ti, T2).

In this case, the microscopic orientational (Debye) polarization p, (t; Ti) is defined by

1P 1 + -Pi = E

and the microscopic electronic (Lorentz) polarization p2(t; T2) is defined by

mi2 + c2 + kp2 = eE,

with T2 = 2M. In the equations for both Pi and P2, the parameters T, and 72 represent
relaxation parameters which may vary over the admissible set T x T2 according to some
unknown but sought after probability measure P = P(-i, ,r2).

In each of these examples, one seeks to characterize the material behavior to perturba-
tions by finding a measure P* that provides the "best" mathematical system response when
compared to observations of the physical system. Thus, inverse problems involving complex
nonlinear systems with function space (probability measures, densities, as well as space and
time dependent coefficients) "parameters" to be estimated are important in many modern
applications.

As part of our ongoing study of estimation of function space parameters in complex non-
linear systems, we have also developed a sensitivity theory [13, 14, 27] for systems depending
explicitly on functions and probability measures.

14



4.3 Traditional Sensitivity

We consider first a parameter estimation problem for the general nonlinear dynamical system

±(t) = g(t, x(t), 9) (4.9)

X(to) = X0,

with discrete time observations

yy=f(tj,)+Ej=Cx(tj,)+ej, j=l,...,n (4.10)

where x, g E RN , f, ej E RM and 0 E RP. The matrix C is an M x N matrix which gives the
observation data in terms of the components of the state variable x.

Traditional sensitivity functions (TSF) are classical sensitivity functions used in mathe-
matical modeling to investigate how the output of a model changes when the parameters and
the initial conditions vary. In order to quantify the variation in the state variable x(t) with
respect to changes in the parameter 0 and the initial condition x 0, we are naturally led to
consider the (traditional) sensitivity functions (TSF)

Ox
sok(t) = - (t), k= 1,...,p, (4.11)

and

rx0 (t) = 1 l= 1,...,N, (4.12)

where x 0j is the 1-th component of the initial condition x0. When the function g is sufficiently
regular, the solution x is differentiable with respect to Ok and x0j, and therefore our sensitivity
functions SOk and rxo, are well defined.

Often in practice the model under investigation is simple enough to allow one to compute
the sensitivity functions (4.11) and (4.12) directly. However, for most more complex models,
it is often preferable (and by now standard) to consider these sensitivity functions as solutions
of their own dynamical systems.

From the sensitivity analysis theory for dynamical systems (numerous references are given
in [13, 14, 27]), we have that s = (so,,..., so,) is an N x p vector function that satisfies the
ODE system

i(t) = gX(t,x,)s(t) + go(t,x,9), (4.13)

s(to) = ONxp.

Similarly, the sensitivity functions with respect to the components of the initial condition xo
define an N x N vector function r = (ro,.0.. , rxON), which satisfies

f (t) = gx(t,x,0)r(t), (4.14)

r(to) = INxN.
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Here we denote by gx = Og/Ox and by go = 9g/OO, the derivatives of g with respect to x
and 0, respectively.

The equations (4.13) and (4.14) are used in conjunction with equation (4.9) to numerically
compute the sensitivities s and r for general cases when the function g is complicated enough
to not allow a closed form solution by direct integration. As we shall explain below, these
sensitivity systems are important components of a standard asymptotic theory (see Chapter
12 of [58]) for standard errors and confidence intervals.

To deal with sensitivity for complex systems with general function space parameters, in
[27] we considered a special case of an abstract nonlinear ODE where the state space is a
general Banach space X and the parameter space M, is a convex subset of a Banach space
M such as, for example, M = L2 . Specifically, if one considers a general nonlinear ODE of
the form

M(t = g (t, X (t), P), (4.15)

where g :IR+ x X x M -* X and X and M are complex Banach spaces, one can under
reasonable assumptions establish both well-posedness and a general sensitivity theory. Let
B(X, Y) denote the space of bounded linear operators from X onto Y and suppose the
function g(t, x, p) of (4.15) has continuous Frechet derivatives g,(t, x, p) with respect to x
and g ,(t,x, It) with respect to p. Then one can show that the Frechet derivative y(t) =

Tx(t, to, xo, p) exists with y(t) in B(M, X) satisfying the equation

= g.(t,x(t, to, xo,pi),tL)y(t) + g,(t,x(t, to, xo,pi),A),

y(to) = 0,

for t > to.
With the parameter space of probability density functions M, which is a convex subset

of a Banach space M, this sensitivity theory can also be applied using directional derivatives
instead of the Frechet derivative. However, it is shown in [27] that the directional derivative
of a continuous function g is the Frechet derivative on M restricted to q -p where p, q E A4,.

In order to accommodate more general problems with Dirac (discrete) measures or mea-
sures with a continuous component and a saltus component, the theoretical results above
were extended to a general convex metric space. This is necessary because the parameter

space associated with the Prohorov metric is no longer a Banach space but is only a special
case of a convex metric space (M 1, dm,). Although the Prohorov metric is not conceptually
easy to use, it generates an equivalent topology to the weak L2 topology (e.g., see [30]) which
is, of course, the same as the weak* topology in the L2 case. Therefore, the Prohorov metric
may be applied in numerical approximation in distribution dependent problems taking ad-
vantage of its relation in convergence to the weak L2 convergence. To treat such problems,
in [13] we extended the theoretical results mentioned above to the case where the parameter
space is a convex metric space. Let (M 1, dM1 ) denote a general convex metric space with
distance dMI and X denote a general complex Banach space. Again we consider a general
nonlinear abstract ODE

'i(t) = g(t, x(t), A,), x(0) = 0, (4.16)

16



where g : R+ x X x Ml - X is continuous in all three variables and Frechet differentiable in
x. Here the solution x E X and the parameter p, E M 1 . The conditions for and statement of
existence and uniqueness of solutions of equation (4.16) along with continuous dependence of
solutions for the general convex metric parameter space are similar to those for the situation
where the parameter space is a general complex Banach space. When deriving the sensitivity
theory for the convex metric parameter space case, the directional derivative is used instead
of the Frechet derivative with respect to the measures.

Given any two arbitrary points pi, v E (M 1 , dM ), we define the directional derivative
6g(t, x, pi; v - pi) of g at pi in the direction v - p, to be the value of the limit

lim g(t, x, Pl + E(V - tl)) - g(t, X, p1) = 60,X, pl; V - AO,C-0

provided this limit exists in X. A sensitivity theory for a convex metric parameter space
as developed in [13] utilizes the directional derivative. We make the assumptions that the
function g(t, x, pi) of (4.16) has a bounded smooth Frechet derivative g.(t, x, pi) with respect
to x and also has a continuous directional derivative 6g(t, x, i1; v - A1) with respect to I1
in the direction of (v - p1). Then the directional derivative y(t) = 6x(t, x, pi; v - p1) exists,
with y : R+ x X x M 1 -+ X, and y satisfies the equation

t) = g.(t,x(t, to, xo, tl),Itl)y(t) + 6g(t,x(t, to, xo, Pl),IL; l- -t)I

y(to) = 0. (4.17)

The theories of [13, 27] are sufficient to a develop computationally useful sensitivity
framework and also provide a foundation for the function space generalized sensitivity and
asymptotic error analysis proposed in the next two sections.

4.4 Generalized Sensitivity

Generalized sensitivity functions (GSFs) were introduced recently by Thomaseth and Cobelli
[59] as a new tool in identification studies to analyze the distribution of the information
content (with respect to the model parameters) of the output variables of a system for a
given set of observations. More precisely, the generalized sensitivity functions describe the
sensitivity of the parameter estimates obtained from an inverse problem with respect to the
data measurements used in the inverse problem.

For a scalar observation model with discrete time measurements (i.e., when M = 1 and
C is a 1 x N array in (4.10)), the generalized sensitivity functions (GSFs) are defined as

1 1
s(t) = 2 (t)F- 1 x Vof (ti, Oo)] , Vof (ti, 0o), (4.18)

i1

where {t}, 1 = 1,..., n, is the time distribution where the measurements are taken,

F = E 1 Vof(tj,o)Vof(tj,o)T (4.19)
j=lU
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is the corresponding Fisher information matrix, and 00 is the usual "true" parameter value
tacitly assumed to exist in standard statistical theories. The symbol "e" represents element-
by-element vector multiplication. For the motivation and details which led to the definition
above, the reader should consult [59] and [34]. The Fisher information matrix measures the
information content of the data corresponding to the model parameters. In (4.18) we see that
this information is transferred to the GSFs, making them appropriate tools to indicate the
relevance of the measurements to the estimates obtained in parameter estimation problems.

We note that the generalized sensitivity functions (4.18) are vector-valued functions hav-
ing the same dimension as the parameter 0 being estimated. The k-th component of the
vector function gs represents the generalized sensitivity function with respect to Ok. The
GSFs are defined only at the discrete time points {tj, j = 1,. . . , n} and they are cumulative
functions, at each time point t, taking into account only the contributions to estimates of
the measurements up to ti, thus indicating the influence of measurements up to that time
on the parameter estimates obtained.

From (4.18) it is readily observed that all the components of gs are one at the end of
the total time interval, i.e., gs(tM) = 1. If one defines gs(t) = 0 for t < ti (gs is zero
when no measurement is collected), then each component of gs varies from 0 to 1 during
the experiment. As developed in [59], the time subinterval during which this transition
has the sharpest increase corresponds to measurements which provide the most information
on possible variations in the corresponding estimated model parameters. The amount of
information with respect to a parameter Ok is directly related to the rate of change of the
corresponding GSF; thus sharp increases in gs k indicate a high rate in additional information
about Ok being provided by the new measurements in that time period.

For finite dimensional systems (N < oo) with a finite number (p < oo) of parameters, the
numerical implementation of the generalized sensitivity functions (4.18) is straightforward,
since the gradient of f with respect to 0 (or x0) is simply the Jacobian of x with respect to
0 (or x0) multiplied by C. These Jacobian matrices can be obtained by numerically solving
the sensitivity ODE system (4.13) or (4.14) coupled with the system (4.9).

We have effectively used GSFs in several problems [5, 12] with finite dimensional pa-
rameters in ordinary differential equation systems. The primary contribution of generalized
sensitivity functions is that they can indicate regions of high information content where,
if additional data points are taken, one can generally improve the existing parameter esti-
mates. This has rather obvious applications to experimental design. Moreover, by visually
investigating the dynamics of GSF curves, one can potentially identify subsets of parameters
which are highly correlated. While there are still some heuristics underlying the development
of GSFs (the presentation in the appendix of [34] offers the most rigorous presentation to
date), it is clear that some version of the GSF theory should become a valuable tool for sci-
entific and engineering investigators needing to estimate parameters in dynamical systems.
Although the GSF theory provides useful information in parameter estimation, the most
insight can be gained when the GSFs are used in conjunction with traditional sensitivity

functions.
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4.5 Asymptotic Error Estimates

The traditional sensitivity functions that we have introduced above also play a fundamental
role in quantifying uncertainty in estimates obtained in inverse problems, specifically in the
computation of standard errors and confidence intervals. We consider the ordinary least
square (OLS) inverse problem by seeking 9 that minimize, subject to (4.9), the cost criterion

n

J(O) = E -iYj - fj(O)12, (4.20)
j=l

where {yj) denotes the experimental data.

Once the optimal 9 are found using an optimization algorithm, standard errors and
confidence intervals are computed by using the asymptotic theory which we proceed to
outline. Assume n scalar measurements (i.e., M = 1) are represented by the statistical
model (4.10) or, equivalently

Yj f(0o) +Ej, j = 1,2,...n, (4.21)

where fj(0o) = f(tj, Oo) is the model for the observations in terms of the state variables and
00 e IRP is a "set" of theoretical "true" parameter values (assumed to exist in a standard
statistical approach). Assume further that the errors Ei, j = 1, 2,. .. ,n, in the statistical
model of the observation or measurement process (4.21) are independent identically dis-
tributed (i.i.d.) random variables with mean E[ej] = 0 and constant variance var[Ej] =

where, of course a, is unknown. (The constant variance assumption can be validated by

use of standard residual plots with the data used in the inverse problems.) It follows that
the observations Yj are i.i.d. with mean E[Yj] = fj(Oo) and variance var[Yj] =g.

Using the data {yj} for the observation process {Yj} with the model, J(O) is optimized

by finding the OLS estimator 9 in (4.20). Note that because Yj is a random variable, the

estimator 0OLS is also a random variable with a distribution called the sampling distribution.
Knowledge of this sampling distribution provides uncertainty information (e.g., standard

errors) for the numerical values of 9 obtained using a specific data set {yj} (i.e., a realization
of {Yj}) when minimizing J(O).

Under reasonable assumptions on smoothness and regularity (the smoothness require-
ments for model solutions are readily verified using continuous dependence results for or-
dinary differential equations in many examples; the regularity requirements involve, among
others, conditions on how the observations are taken as sample size increases, i.e., as n -4 0c),

the standard nonlinear regression approximation theory ([39], [45], [55], and Chapter 12 of
[58]) for asymptotic (as n -* cc) distributions can be invoked. This theory yields that
the sampling distribution for the estimator 9(Y) = OOLS(Y), where Y = {YJ}j>i, is ap-

proximately a p-multivariate Gaussian with mean E[0(Y)] ,-z Oo and covariance matrix
cov[9(Y)] o = , [xT(9o)x(o) -l. Here x(6) = Fo(O) is the n x p sensitivity matrix
with elements

XjkO) O2 and Fo(0) (flo(O),. ..
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That is, for n large, the sampling distribution approximately satisfies
OOLS(Y) gm(o, 2[XT(o)X(Oo) - ) := A/'m(0o, Eo). (4.22)

The elements of the matrix X = (Xjk) can be estimated using the forward difference

Ok -zf( ,) fj (0 + hk) - fj(O)Xjk) - ak IhkI

where hk is a p-vector with nonzero entry in only the kth component, or using sensitivity
equations (see [27] and the references therein). Here we consider the sensitivity equation
approach and since 00, o are not known, we approximate them in E0 = 0o[XT(Oo)X(0)] - 1.

Following standard practice, E0 is approximated by

ro E( ) = ( 2[XT()X( )1-l

where 9 is the parameter estimate obtained from minimizing (4.20) and X(0) = d 4 (9 ). From
the outputs defined in (4.9), it suffices to compute the sensitivities o by solving the N x p
matrix linear variational differential equation

d (Ox) O9gox g (4.23)
dt -jo - x 00-0 '

which is the same as the sensitivity equation (4.13). The matrix coefficient and the forcing
function in this equation are evaluated along solutions of the system equation (4.9). The
approximation &2 to o. is given by

2 Z: a2 1.0 0 n P2  1 Iyj _ f i(ol .

n- p j=l

Standard errors to be used in confidence interval calculations are thus given by SEk(O)

V'Ekk(6), k = 1,2,...,p (see [36]).
Finally, in order to compute the confidence intervals (at the 100(1 - c)% level) for the

estimated parameters J, and c, we define the confidence level parameters associated with
the estimated parameters so that

P(Ok - t,/ 2 SEk(O) < Ok < 9 k + t/ 2 SEk(9)) = 1 - C, (4.24)

where c E [0, 1], and t/ 2 E R+. For a given c value (small, say c = .05 for 95% confidence
intervals), the critical value tc/ 2 is computed from the Student's t distribution t' - P with n-p
degrees of freedom. The value of t4/2 is determined by P(T > tc/2) = c/2 where T "-' P.

Again, the theory outlined above is for finite dimensional systems with finite dimensional
parameters 0. The challenge is to carry out an asymptotic analysis in infinite dimensional
function/measure spaces that parallels that for finite dimensions give in Chapter 12 of [58].
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We have begun using the approximation ideas of [7, 13, 27, 30] along with the finite dimen-
sional asymptotic error analysis theory outlined above as applied to finite nodal values to
obtain confidence intervals for the nodes, leading to piecewise smooth "confidence bands"
or confidence functions for the functions/distributions being estimated. The convergence
theories for these approximations will be used to attempt to obtain a theory for limiting
confidence bands for the infinite dimensional parameters being estimated. We have some
early computational results providing promise that this research could lead to significant
new and useful methodologies. In [11] we investigated stability and convergence of the both
delta measure and spline based schemes for approximation of probability distributions (in a
Prohorov framework which guarantees convergence of the distributions but not the densities
in all cases-note the left graphs in the figures below). This early work has been followed
with initial efforts at obtaining computationally the confidence bands. Sample findings are
depicted in Figures 4-7 for estimating a known distribution using either delta measure or
spline approximations along with the finite dimensional asymptotic theory to compute nodal
confidence intervals for the densities. These nodal confidence intervals are then interpolated
to produce confidence bands for both the densities and distributions. These initial calcula-
tions suggest existence of an underlying framework for asymptotic confidence bands in the
case of infinite dimensional states and parameters.

Known and Estimated Probability Densities with Tnwncated Confidence InteNals (M-16) Known and Estimated Probability Distributions with Confidence Bands (M-16)0.91
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Figure 4: Estimates (red lines) of probability densities and probability distributions with
confidence intervals and bands (dashed lines) given a true gaussian distribution (blue line)
using delta measure approximations (DEL(16)) with 20% absolute error in data.
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Figure 5: Estimates (red lines) of probability densities and probability distributions with
confidence intervals and bands (dashed lines) given a true gaussian distribution (blue lines)
using spline approximations (SPL(12,128)) with 20% absolute error in data.
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Figure 6: Estimates (red lines) of probability densities and probability distributions with
confidence intervals and bands (dashed lines) given a true bi-gaussian distribution (blue
lines) using delta measure approximations (DEL(28)) with 20% absolute error in data.
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Figure 7: Estimates (red lines) of probability densities and probability distributions with
confidence intervals and bands (dashed lines) given a true bi-gaussian distribution (blue

lines) using spline approximations (SPL(12,128)) with 20% absolute error in data.
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4.6 Nodal Networks with Uncertainty

Networks with uncertainty are ubiquitous in science and engineering, but especially in com-
plex nonlinear systems of interest to DOD. In particular, nodal networks with uncertainty are
fundamental to the understanding of problems involving dynamic resource management and
allocation. Examples range from service scheduling and material supply chains to produc-
tion systems and modern high speed communication networks where information is routed
between nodes in a distributed information system with a global grid.

We summarize one approach in an interdisciplinary group effort. In [5], an approach to
modeling the impact of disturbances in an agricultural production network is presented. A
stochastic model and its approximate deterministic model for averages over sample paths
of the stochastic system are developed. Simulations, sensitivity and generalized sensitivity
analyses were given. Finally, it was shown how diseases (our example is modeled on the
devastating Foot and Mouth Disease (FMD) that hit the United Kingdom (UK) in 2001)
may be introduced into the network and corresponding simulations are discussed.

The current production methods for livestock follow the just-in-time philosophy of many
manufacturing industries as well as supply chains. Feedstock and animals are grown in
different areas. Animals are moved from one farm to another, depending on their age.
Unfortunately, shocks propagate rapidly through such systems; an interruption to the feed
supply has a much larger impact when farms have minimal surplus supplies in-stock than
when they have large reserves. The just-in-time movement of animals between farms serves

as another vulnerability. Stopping movement of animals to and from a farm with animals
infected by a disease will have effects that quickly spread through the system. Nurseries
supplying the farm will have nowhere to send their animals as they grow up. Finishers and
slaughterhouses supplied by the farm will have their supply interrupted.

In [5] we combined initial statistical and mathematical modeling ideas to address the
above issues, using the North Carolina swine industry's potential response to FMD as an
example. We focused our attention on the North Carolina swine industry because it is both
the second largest swine industry in the United States, and is local to us. Our goal was to

develop models that could be used to investigate how small perturbations to the agricultural
supply system would affect its overall performance. A hurricane that throttles inter-farm
transportation for a short duration, or a disease outbreak that spreads through distribution

channels are example causes of the perturbations of interest. In the former case, the just-in-
time delivery systems may not provide enough slack to absorb the shock. In the latter case,
strategies that involve destruction of all livestock in an infected branch of the system may
be overly harsh; a more moderate response may be as effective without the high toll on the
infrastructure.

We modeled a simplified swine production network in North Carolina containing four
levels of production nodes: growers/sows (Node 1), nurseries (Node 2), finishers (Node 3),
and processing plants/slaughter houses (Node 4). At grower or sow farms (Node 1), the new
piglets are born and typically weaned three weeks after birth. The three-week old piglets are
then moved to the nursery farms (Node 2) to mature for another seven weeks. They are then
transferred to the finisher farms (Node 3), where they grow to full market size, which takes

24



about twenty weeks. Once they reach market weight, the matured pigs are moved to the
processors (slaughter houses) (Node 4). Pork products then continue through wholesalers to
consumers. There are also several inputs to the system which we will not consider, such as
food, typically corn grown in the midwest. There are several types of breeding farms where
pure-bred stock are raised; these are typically crossed to produce hybrid strains for pork
production.

In our efforts in [5], we formulated a nonlinear stochastic model for our agricultural
network and showed how it can be converted to an equivalent (in a sense made precise
below) deterministic differential equation model. This deterministic model readily lends
itself to simulations and as well as to sensitivity analysis techniques such as those outlined
above. In particular, we used it in simulations to mimic the presence of an infectious disease
in the network.

In addition to the development of models for a typical production network permitting
perturbations, a significant contribution of the effort in [5] is the demonstration of stochastic,
mathematical and computational methodology that is available to domain scientists, statisti-
cians and applied mathematicians working in a concerted team effort on complex problems
of the type exemplified here.

4.7 Modeling

We considered in [5] a simplified swine production network with four aggregated nodes: sows
(Node 1), nurseries (Node 2), finishers (Node 3), and slaughter houses (Node 4). Our goal
was to study the effects of perturbations within the network. This can be done either by
affecting the nodes or the transitions between nodes directly or indirectly. For instance, a
problem with the breeding farms would result in a reduction of sows available for producing
new piglets. This would result in a reduced rate of transition from Node 1 to Node 2,
since we could not grow as many piglets. We could then track the effect of this through our
network.

Although unavoidable in actual production processes, we assumed in our example that
there are no net losses in the network (i.e., the total number of pigs in the network remains
constant) and that the only deaths occur at the slaughter houses. Thus we assumed that the
number of processed pigs per day at the slaughter houses is equal to the number of newborn
piglets per day at the growers. We can model reduced birth-rates by reducing the rate at
which piglets move to the nurseries. This led us to deal with a closed network. We note
that this approximation is realistic when the network is efficient and operates at or near full
capacity (i.e, when the number of animals removed from the chain are immediately replaced
by new production/growth, avoiding significant idle times). Our closed network model for
the swine production is summarized schematically in Figure 8.

Each node with corresponding population number Ni, i = 1,..., 4, in Figure 8 represents
an aggregation of all the production units corresponding to that level in the production
network. Given a specific production network, any of the four levels of the chain may be
broken into its constituent units (e.g., farms), and analyzed in detail as a separate sub-
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Figure 8: Aggregated agricultural network model.

network. The directed edges between the nodes represent the movement of the pigs through
the network. The rate is determined by the pigs' residence time, the number of pigs at each
node, and the capacity constraints at the corresponding nodes. Let Li denote the capacity
constraint at node i, i = 1,. .. , 4. Since we have a closed network, it is assumed that there
is no capacity constraint at Node 1 and therefore we take L1 = oo. We also define Sm to
be the maximum exit rate at Node 4, i.e., the maximum killing capacity at the slaughter
house. The residence times at each node, together with the capacity constraints and the
slaughterhouse killing capacity, are based on very rough estimates of swine production in
North Carolina and these were used to obtain parameters for the simulations reported on
here and in [5].

4.8 Stochastic and Deterministic Models

We model the evolution of the food production network shown in Figure 8 as a continuous
time discrete state density dependent jump Markov Chain (MC) [3, 42] with a discrete state
space embedded in an R4 non-negative integer lattice C. The state of this MC at time t is
denoted by X(t) = (Xi(t),... ,X 4 (t)), where Xi(t) is the number of pigs at node i at time
t, i = 1. ,4.

The rates of transition of X(t) are nonlinear functions Ai : C -* [0, cc) for i = 1,..., 4,
and for x E C are given by:

A1 (x) : ql(xl - 1,x 2 + 1,X 3 ,X 4 ) = klxl (L2 -X2)+

A2(x):= q2 (xI, x 2 - 1, x 3 + 1, x 4) = k2 x 2 (L 3 - x3 )+

A3(x):= q3 (X1 , x 2, x 3 - 1, x4 + 1) = k3 x3 (L 4 -4)+

A4(X) :q4(xl + 1, x2, x3, x4 - 1) = k4 min(x 4 , Sm) (4.25)

where ki, i = 1,... , 4, is proportional to the service rate at node i; Li, i = 2, 3, 4, is the
buffer size (capacity constraint) at node i and Sm is the slaughter capacity at node 4 as
discussed above. For any real z, the symbol (z)+ is defined as the non-negative part of z,
i.e., (z)+ = max(z, 0). Then ql(xI - 1, X 2 + 1, x 3, X 4) is given by

q, (XI - 1,x 2 + 1, x 3 , x 4 ) =

lim Pr[X(t + h) = (X1 - 1, x 2 + 1, x3, x4)IX(t) = (X1, X2, X3, X4 )]
h-0+ h
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The other qj are given similarly.
The simple model for transition rates given above is formulated under the following

assumptions and hypotheses. First it is assumed that the transportation rates qj, i = 1, 2, 3,
are proportional to xi (Lj+j - xi+)+, the product of the number of animals available and the
available capacity at the next node. If no capacity is available, the rate is taken as zero. The
rate at the slaughter house (Node 4) is the maximum Sm if a sufficient number of animals is
available; otherwise all animals present at the node are slaughtered on that day. Finally, it
is assumed that the network is at or near steady-state and maximum efficiency in that the
slaughter rate at Node 4 is the same as the input at Node 1 (this is represented schematically
in Figure 8 by the arrow from Node 4 to Node 1). This results in the rate dynamics (4.32)
below with the output rate at Node 4 the same as the input rate at Node 1.

We remark that the product nonlinearities xi (L+j -xi+l)+ of (4.25) where transportation
occurs more rapidly the further the node level is from capacity (i.e., the system reacts more
rapidly to larger perturbations from capacity) are only one possible form for these terms.
One could also reasonably argue for alternative terms of the form xi Xi+j where Xj+i is the
characteristic function for the set {(Lj+j - xi+,) > 0} so that the transportation rate from
a node depends only on the number available at that node so long as capacity at the next
node has not been reached. We note that in this case the sensitivity analyses using the ideas
discussed above are more difficult due to a lack of continuity of the dynamics in the system
equations.

Let Ri(t) i = 1, ... , 4, denote the number of times that the ith transition occurs by time
t. Then R, is a counting process with intensity Aj(X(t)), and the corresponding stochastic
process can be defined by

I(t)= Yi( Ai(X(s))ds), i=1...,4, (4.26)

where the Y are independent unit Poisson processes. That is, sample paths ri(t) of R(t)
are given in terms of sample paths x(t) of X(t) by

ri(t) = Y( jAi(x(s))ds), i= 1... ,4. (4.27)

We write R in this form to illustrate that Ai is a rate of the corresponding counting process.
Our stochastic model then can be written as

Xl(t) = XI(0) - Rj(t) + R 4 (t)

X 2 (t) = X 2 (0) + Rl(t) - R 2 (t)

X3(t) = X 3 () + R2(t) - R 3(t)

X4(t ) = X 4 (0) + 3 3(t) - R 4 (t). (4.28)

The above system typically cannot be solved for a stationary distribution and an empirical
approach based on the so-called Gillespie algorithm [47] can be used to investigate the
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long term behavior of the system (see [5]). The approximate large population behavior of
an appropriately scaled system may be also analyzed via macroscopic deterministic rate
equations as we shall explain next (the original theory is due to Kurtz and is discussed in
[42] and the references therein).

Let N be the total network or population size. If N is known we may consider the
animal units per system size or the units concentration in the stochastic process CN(t) =

X(t)/N with sample paths cN(t). For large systems this approach leads to a deterministic
approximation (obtained as solutions to the system rate equation defined below) to the
stochastic equation (4.28), in terms of c(t), the large sample size average over sample paths
or trajectories cN(t) of CN(t).

We rescale the rate constants ki, Li and Sm as follows:

K4 = k4, Ki = Nki, i- =1,2or3,
sm= &IN, li = Li/N. (4.29)

According to Equation (4.25), this rescaling implies that

i(x) = Ki xi(Li+l - xi)+/N = NKi CN(li+i - c4N)+ i = 1,2,3,

and
\ 4 (x) = r 4 min(x4 , Sm) = NK 4 min(c4 , sm).

Recall that for large N the Strong Law of Large Numbers (SLLN) for the Poisson Process
Y implies Y(Nu)/N , u [48]. One can use this fact, along with the rescaling of the constants
as given above, to argue that sample paths ri(t) for the counting process (4.26) defined in
terms of the sample paths x(t) or cN(t) = x(t)/N may be approximated for large N in terms
of the deterministic variables c(t), the averages over sample paths or trajectories cN(t) of

CN (t), by

r(N) (t) ri r(t) = Yi( Aji(x(s))ds)

1 Yi(N KiC N(S)(li+1 - cN 1 (s))+ ds)

N I i
J, ci(s)(li+1-ci+1(s))+ds for i= 1,2,3, (4.30)

and similarly
r() (t) r 4 t) K4 min(c4(s),s.)ds.

For a full and rigorous discussion of this "approximation in mean", see Chapters 6.4 and 11 of
[42] and Chapter 5 of [3]. (We note that these modeling ideas are also useful in examples for
logistic growth, epidemics (SIR), chemical reaction networks and general "density dependent
processes", among others.) The averages c(t) satisfy a system of deterministic ordinary
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differential equations which can be heuristically derived by beginning with the system (4.28).
Upon dividing both sides of each equation by N and applying the above, we obtain the rate
equations, i.e., the system of integral equations approximating via the SLLN the original
stochastic system, as follows:

cf(t) = c1(0) - r(N)(t) + r,N)(t)

ci(0) - I rlCl(S)(12 - c2(s))+ ds + I 4 min(c4 (s), sm) ds

cN(t) = c2(0) + r(N)(t) - rN)(t)

; c2 (0) - 12c2 (s)(13 -c 3(s))+ds + KI CIl(S)(1 2 -C2(s))+ds

cN(t) = c3(o) + rN)(t) - r7)(t)

C3 c(0) 1 j K3C3(S)(14 -C4(s))+ ds + j K'2C2(S)(13 - C3(s)), ds

c4(t4 0= ca() + r3 (t) - r4 (t)

ca(0) + I r 3c3 (S)(14 - c4(s))+ds - 1 4 min(c4 (s),sm)ds. (4.31)

Upon approximating the c$N(t) on the left above by the ci(t) and differentiating the
resulting equations, we find that the integral equation system is equivalent to a system of
ordinary differential equations for c(t) E 1R4 given by

dcl(t) - Kcl(t)(12 - c2 (t))+ + K4 min(c4 (t), Sm)

dt
dC2 (t) - 2 c2 (t)(13 - c3 (t))+ + K1CI(t)(1 2 - C2(t))+

dt
dC3(M)- 3C3(t)(1 - c4 (t))+ + 2 c2(t)(13 -C3(t))+

dt
dc4(t) - 4 min(c 4(t), Sm) + K3 c3 (t)(14 - c4(t))+ (4.32)

dt

with the initial conditions c(0) = co. As we demonstrate next, solutions of these equations
yield quite good approximations to the sample paths of the stochastic system.

A sample of five realizations with N = 3, 165,000 is plotted in Figure 9(top). Note that
the realizations exhibit very little visible differences. However, when one carries out the
simulations for a smaller system (N = 3,165 pigs with the parameters scaled accordingly),
the variations are readily visible as can be seen in Figure 9 (bottom). We also remark that
these simulations offer graphic depictions of the approximation theory discussed above where
in the case of very large N one can cannot distinguish between the stochastic simulations and
the corresponding deterministic simulations for the sample path averages. This comparison
is given in Figure 10 where we have depicted (bottom) the solution of the concentrations
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Figure 9: Simulation of the stochastic model (4.28) of the agriculture production chain via
the Gillespie algorithm for N=3,165,000 (top) vs. N=3,165 (bottom)
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in system (4.32) as the rescaled quantities Ni(t) = Nci(t) vs. the corresponding stochastic
simulation (top). As expected, we find that the stochastic and deterministic computations
provide similar numerical results with the realizations fluctuating about the solution of the
deterministic system for the averages as predicted by the theory.
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Figure 10: Simulation with the stochastic model (top) vs. solution of the deterministic (rate
equation) system (bottom) for t E [0, 1001 with N=3,165,000.
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4.9 Summary Comments on Nodal Networks

In [5] we demonstrated a methodological approach to the investigation of production net-
works and their vulnerability to disturbances such as diseases. The stochastic model and
the resulting approximate deterministic system we employed were shown to agree well. We
also carried out simulations and sensitivity analyses. We used the deterministic model to
show how to determine the parameters to which the model exhibits the most sensitivity.
This is more readily done with the deterministic approximation of the stochastic model, but
allows one to draw conclusions about sensitivity with respect to parameters in the Markov
process. We also demonstrated in [5] how disease can be introduced and the resulting net-
work vulnerabilities analyzed. The deterministic version of the model is also amenable to
the use of inverse problem algorithms with the data to obtain parameter estimates along
with measures of associated uncertainty (e.g., standard errors [36, 58]) for the underlying
transition rates ki. The transmission dynamics of infection used in [5] were deterministic in
nature. However, it is well known, for example, that random effects can have a major impact
on the invasion of an infection into a population. Finally, the model as developed assumes
instantaneous transport between nodes. If infection during transport is an important factor
(and depending on the disease it may well be) then the structure of the model should be
modified to incorporate positive transport times. This could lead to more interesting (math-
ematically) and more difficult dynamical systems with time delays in place of (4.32) and
the corresponding systems in [5]. All of these issues should be addressed in a general nodal
network model.

The randomness seen in the stochastic network model originates from the random move-
ment of discrete individuals from node to node. The analysis of [5] and the figures above
show that, due to an averaging effect, these random effects become less important as the
system size N increases. Application of the stochastic transportation model to describe real-
world situations should, therefore, account for the size of the groups in which units (pigs in
the case of the agriculture production model of [5]) are transported between nodes. If, for
example, one thousand units were moved at a time, the appropriate notion of an "individual"
within the model would be a thousand units. Treating each group of a thousand individuals
as a unit would lead to a marked increase in the magnitude of stochastic fluctuations seen at
the population level. Consequently, even though the system size in simulations might be on
the order of millions of units, it might be that the resulting stochastic fluctuations in a more
realistic model of such production systems are closer to those shown in Figure 9 (bottom)
than to those of Figure 9 (top).

The approach developed in [5] and outlined in this paper has rather obvious potential
for application to a wide range of problems. These include the investigation of the spread
of diseases through spatially or structurally distributed dynamic populations (e.g., avian
flu through migrating bird populations, contagious infections through highly mobile and/or
age-structured human and animal populations). In some of these cases the natural nodal
structure would be a continuum, requiring stochastic and deterministic models with a con-
tinuum of spatial/structural heterogeneities, leading to partial differential equation systems.
Such applications would undoubtedly motivate the development of interesting new stochastic
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and deterministic mathematical and computational methodologies.
More importantly, the approach and methodology outlined here are useful in general

supply networks for investigation of a wide range of perturbations (either accidental or
deliberate) e.g., loss of capacity at a given node such as a factory being shut down, a node
being rendered inoperable via weather, technical (electrical/mechanical) difficulties in coin-
munication/transport systems, etc.
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